Vesicular Glycolysis Provides On-Board Energy for Fast Axonal Transport

نویسندگان

  • Diana Zala
  • Maria-Victoria Hinckelmann
  • Hua Yu
  • Marcel Menezes Lyra da Cunha
  • Géraldine Liot
  • Fabrice P. Cordelières
  • Sergio Marco
  • Frédéric Saudou
چکیده

Fast axonal transport (FAT) requires consistent energy over long distances to fuel the molecular motors that transport vesicles. We demonstrate that glycolysis provides ATP for the FAT of vesicles. Although inhibiting ATP production from mitochondria did not affect vesicles motility, pharmacological or genetic inhibition of the glycolytic enzyme GAPDH reduced transport in cultured neurons and in Drosophila larvae. GAPDH localizes on vesicles via a huntingtin-dependent mechanism and is transported on fast-moving vesicles within axons. Purified motile vesicles showed GAPDH enzymatic activity and produced ATP. Finally, we show that vesicular GAPDH is necessary and sufficient to provide on-board energy for fast vesicular transport. Although detaching GAPDH from vesicles reduced transport, targeting GAPDH to vesicles was sufficient to promote FAT in GAPDH deficient neurons. This specifically localized glycolytic machinery may supply constant energy, independent of mitochondria, for the processive movement of vesicles over long distances in axons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-propelling vesicles define glycolysis as the minimal energy machinery for neuronal transport

The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) facilitates fast axonal transport in neurons. However, given that GAPDH does not produce ATP, it is unclear whether glycolysis per se is sufficient to propel vesicles. Although many proteins regulating transport have been identified, the molecular composition of transported vesicles in neurons has yet to be fully elucidated....

متن کامل

Seeing the unseen: the hidden world of slow axonal transport.

Axonal transport is the lifeline of axons and synapses. After synthesis in neuronal cell bodies, proteins are conveyed into axons in two distinct rate classes-fast and slow axonal transport. Whereas fast transport delivers vesicular cargoes, slow transport carries cytoskeletal and cytosolic (or soluble) proteins that have critical roles in neuronal structure and function. Although significant p...

متن کامل

Slow axonal transport: fast motors in the slow lane.

The bulk of neuronally synthesized proteins destined for the axon is transported in a phase of transport approximately 100 times slower (1mm/day) than the vesicular traffic of fast axonal transport (100mm/day). Of late, a number of studies have shed considerable light on the controversies and mechanisms surrounding this slow phase of axonal transport. Along-standing controversy has centered on ...

متن کامل

Analysis of Signaling Endosome Composition and Dynamics Using SILAC in Embryonic Stem Cell-Derived Neurons*

Neurons require efficient transport mechanisms such as fast axonal transport to ensure neuronal homeostasis and survival. Neurotrophins and their receptors are conveyed via fast axonal retrograde transport of signaling endosomes to the soma, where they elicit transcriptional responses. Despite the essential roles of signaling endosomes in neuronal differentiation and survival, little is known a...

متن کامل

Rab33a mediates anterograde vesicular transport for membrane exocytosis and axon outgrowth.

Axon outgrowth requires plasma membrane expansion, which results from post-Golgi vesicular transport and fusion. However, the molecular mechanisms regulating post-Golgi vesicular trafficking for membrane expansion and axon outgrowth remain unclear. Here, we show that Rab33a expression became upregulated during axon outgrowth of cultured rat hippocampal neurons. Rab33a was preferentially localiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 152  شماره 

صفحات  -

تاریخ انتشار 2013